A Quantitative Approach Using the Köppen Classification and Radiocarbon Dating
University of Oxford
Università di Pisa
University of Cambridge
Climate & Chronology series 15 October 2024, University of Oxford
Late Mesolithic (LM), Late Foragers.
@ChatGPT
Residenciality increase
Circular mobility to access discontinuous resources in time and space (seasonality)
Low demography
Early Neolithic (EN), Early farmers.
@ChatGPT
Permanent settlements
Logistic mobility to access localized resources for farming economy
High demography
Early Mesolithic (EM)
Middle Mesolithic (MM)
Late Mesolithic (LM)
Early Neolithic (EN)
Middle Neolithic (MN)
Late Neolithic (LN)
Baume de Montclus, stacked SPD
Franchthi cave, stacked SPD
EM - Early Mesolithic |
MM - Middle Mesolithic |
LM - Late Mesolithic |
EN - Early Neolithic |
MN - Middle Neolithic |
LN - Late Neolithic |
neonet-data-2023-10-22-select-aera.geojson
neonet-data-2023-10-22.geojson
The most recent LM date median
The most ancient EN date median
weighted.median <- matrixStats::weightedMedian(x = ages1$Date1$ageGrid,
w = ages1$Date1$densities)
df.c14[i, "median"] <- -(weighted.median - present)
if(stat.mean){
weighted.mean <- matrixStats::weightedMean(x = ages1$Date1$ageGrid,
w = ages1$Date1$densities)
df.c14[i, "mean"] <- -(weighted.mean - present)
}
df.c14[i, "tpq"] <- -(min(ages1$Date1$ageGrid) - present)
df.c14[i, "taq"] <- -(max(ages1$Date1$ageGrid) - present)
interpolated <- akima::interp(x = df$longitude,
y = df$latitude,
z = df$median,
duplicate = "mean")
interp_df <- tidyr::expand_grid(i = seq_along(interpolated$x),
j = seq_along(interpolated$y)) %>%
dplyr::mutate(lon = interpolated$x[i],
lat = interpolated$y[j],
date.med = purrr::map2_dbl(i, j, ~interpolated$z[.x, .y])) %>%
dplyr::select(-i, -j)
Mean annual temperature (ºC)
Annual precipitation (mm year -1)
Biome (pollen-based)
Beyer et al. 20201
52: Le Baratin, Ly-4725
Beyer, R. M., Krapp, M., & Manica, A. (2020). High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. Scientific data, 7(1), 236.
Ammerman, A. J., & Cavalli-Sforza, L. L. (1971)[^2]. Measuring the rate of spread of early farming in Europe. Man, 674-688.
Fort, J. (2022). The spread of agriculture: quantitative laws in prehistory?. In Simulating Transitions to Agriculture in Prehistory (pp. 17-28). Cham: Springer International Publishing.
Betti, L., Beyer, R. M., Jones, E. R., Eriksson, A., Tassi, F., Siska, V., … & Manica, A. (2020). Climate shaped how Neolithic farmers and European hunter-gatherers interacted after a major slowdown from 6,100 BCE to 4,500 BCE. Nature Human Behaviour, 4(10), 1004-1010.
Binder, D., Angeli, L., Gomart, L., Huet, T., Maggi, R., Manen, C., … & Tagliacozzo, A. (2019, March). L’Impresso-cardial du nord-ouest et ses rapports avec la «zone-source»: une synthèse chrono-culturelle. In Céramiques imprimées de Méditerranée occidentale. Matières premières, productions, usages.